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Summary

A two-phase piloted simulation study was conducted to

investigate alternative wing and flap controls for tilt-wing

aircraft. The initial phase of the study compared the flying
qualities of both a conventional (programmed) flap and an

innovative geared flap. The second phase of the study
introduced an alternate method of pilot control for the

geared flap and further studied the flying qualities of the

programmed flap, and two geared flap configurations. In
general, the pilot ratings showed little variation between

the programmed flap and the geared flap control concepts.

Some differences between the two concepts were noticed

and are discussed in this paper. The addition of pitch

attitude stabilization in the second phase of the study

greatly enhanced the aircraft flying qualities. This paper

describes the simulated tilt-wing aircraft and the flap

control concepts, and presents the results of both phases
of the simulation study.

Introduction

Tilt-wing aircraft are a viable choice for vertical and short

takeoff and landing (V/STOL) transports and other

smaller V/STOL aircraft, because the tilt-wing concept
lends itself well to reasonable efficiency in hover and to

very good efficiency in cruise flight. A good technolog3,

base for tilt-wing aircraft exists. The first tilt-wing aircraft
to transition from hover to forward flight was the Vertol

VZ-2 in 1958. Other flight article tilt-wing aircraft

included the Hiller X- 18 (1958-1964), the Vought-Hiller-
Ryan XC- 142 (1964-1967), and the Canadair CL-84

(1965-1974). In particular, the XC-142 and the CL-84

flew military operational demonstrations.

Some significant issues associated with tilt-wing aircraft

include wing buffet during decelerating or descending

flight, a strong wing angle to speed dependence, wing
generated pitching moments, and the requirement for a

tail rotor or tail thruster to provide pitch control at low
speeds and hover.

Renewed interest in tilt-wing aircraft from the military
and civil communities resulted in the piloted simulation

study at NASA Ames Research Center. This renewed

interest includes use of tilt-wing aircraft for the U. S.
Special Operations Command aircraft, the U. S. Air Force

Advanced Theater Transport, NASA high speed rotorcraft
studies, and proposed civil applications. A new look at

tilt-wing aircraft was further motivated by advances in

technologies such as propulsion, materials, and flight con-
trol systems which offer the potential to address shortfalls

of previous tilt-wing aircraft.

Two piloted simulations of a transport size tilt-wing air-
craft have been completed on the Ames Vertical Motion

Simulator (VMS) (refs. 1--4). This paper presents the
results of both simulations.

The first simulation evaluated and compared the flying
qualities of two wing tilting concepts, a conventional

programmed flap (where the wing is driven directly) and
an innovative geared flap (where the flap serves as an

aerodynamic servo to position the free-pivoting wing).

The programmed flap was the control concept used by

previous tilt-wing aircraft. The geared flap was first pro-
posed by Churchill (ref. 5) and has the potential to elimi-

nate the tail rotor or tail thruster required by previous tilt-

wing aircraft in hover and low speeds for pitch control;
this could result in a significant reduction in aircraft

weight and complexity.

The second simulation introduced several refinements,

including a variation to the pilot control of the geared
flap, a redefinition of the pilot evaluation tasks, and
control law refinements.

The combined objectives of both simulations were to:

(1) simulate a representative tilt-wing aircraft, (2) develop

control laws for the programmed flap and the geared flap

control concepts, (3) evaluate and compare the flying
qualities of the flap control concepts, and (4) determine
the feasibility of eliminating the tail rotor or tail thruster

using the geared flap concept.

This paper describes the simulated tilt-wing aircraft, the

flap control concepts, and the experiment design includ-

ing the simulation facility and the pilot evaluation tasks of

both simulations. Results of the simulations are presented,



includingflyingqualitiescomparisonsbetweentheflap
controlconceptsforbothpilotedsimulationsandadis-
cussionofthetailthrusterpitchcontrolpowerusageby
eachflapconfigurationduringthesecondsimulation.

Simulated Tilt-Wing Aircraft

The conceptual tilt-wing aircraft of this study was a mid-

sized V/STOL transport aircraft, sized at about two-thirds

the weight of a C-130. A tail thruster was included to

provide pitch control during hover and low speeds: A
sketch of this conceptual aircraft is shown in figure 1. The

aircraft had an overall length of 92 ft, a gross weight of

87,000 lb, and a payload capability of 10,000 lb. It had

four engines with 26 ft diameter propellers. The thrust to

weight ratio was 1.15. The wing span was 109 ft with an

aspect ratio of 9. The low horizontal tail was fully mov-
able from 0 ° to 28 ° and was scheduled with wing
incidence. The wing loading was 66 lb/ft 2 and the disk

loading was 40 lb/ft 2.

Aircraft Control Effectors

During hover and low speed flight, longitudinal control

was provided by the tail thruster and wing incidence, and

pitch control was provided by the tail thruster. Pilot pref-
erence and choice of longitudinal control technique near

hover was somewhat configuration dependent and will be

discussed in the results of the second simulation. During

conversion, the elevator, horizontal tail, and tail thruster

provided pitch control. The throttle controlled altitude

during hover and conversion. During airplane mode, all
effectors worked conventionally.

Simulation Math Model

The longitudinal rigid airframe aerodynamic and dynamic
characteristics were modeled completely. The aerody-

namic model used a component buildup method to

develop total forces and moments. Momentum theory was
used to calculate propeller slipstream velocities which

were then used with the "power-off' aerodynamics data

to obtain "power-on" aerodynamic characteristics. Other
elements in the math model included coupled-wing-body

equations of motion, engine and propeller dynamics,

programmed flap and geared flap controls, a generic

landing gear model, and a buffet boundary model. Pitch
axis stabilization was augmented in rate only during the

first simulation and rate plus attitude during the second

simulation. The first simulation did not include a ground

effects model, however the second simulation did include

a developmental ground effects model. During the first
simulation, the simulation model cycled real-time at a

frame rate of 15 msec on a CDC 875. During the second

simulation, the simulation model cycled real-time at a

frame rate of 10 msec on a Vax 9000.

Wing buffet is a significant issue of all tilt-wing aircraft.
The buffet onset was defined from wind tunnel data and

was a function of the effective wing angle-of-attack and

the flap setting. The progressive deterioration of the

flying qualities as deeper buffet was encountered was not
modeled. A typical buffet boundary for the simulation is

shown in figure 2 for a glideslope of -7.5 °. It should be
noted that as tilt-wing aircraft transition from forward

flight to hover, aerodynamic lift is replaced by powered
lift and buffet onset becomes a ride quality issue. Recov-

ery from buffet is immediate with the application of

power.

The lateral/directional dynamic characteristics were

modeled using stability derivatives. The dominant

features were high roll damping and the addition of turn
coordination above 30 knots. This study concentrated on

longitudinal flying qualities, hence, accurate modeling of
the lateral-directional dynamics was considered less criti-

cal to the study. A description of the math model can be

found in reference 4.

Flap Control Concepts

The programmed flap control concept uses a flap sched-
ule that is basically a function of the wing incidence,

although the pilot is provided an attenuation control. The

pilot sets a desired wing incidence by using a beeper
switch on the throttle grip which, in turn, sets the

programmed flap deflection through cam or electrical
control. The wing is directly driven by a hydraulic

actuator, as shown in figure 3.

The geared flap control concept (ref. 5) uses the flap as an

aerodynamic servo tab to control the wing incidence
relative to the fuselage. A schematic of this flap control

concept is shown in figure 4. The pilot input is done

through a beeper switch located on the throttle grip or

through a combination of the beeper switch and the

longitudinal stick. Either way, the pilot input results in a

flap deflection which in turn drives the wing incidence.
The wing is essentially free pivoting (some damping is

required) and is driven primarily by the forces generated

by the flap deflections within the propeller slipstream. For

example, an increase in flap deflection causes an unbal-
anced aerodynamic moment about the wing pivot, which

is balanced when the wing rotates down canceling the

moment via mechanical feedback to the flap through the

wing]fiap linkage. Aerodynamic moments generated by
aircraft motion, friction and artificial damping also affect

the pivoted wing response.
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Withtheprogrammedflapconcept,theaircraftneedsa
tailrotorortailthrusterforpitchcontrolinhoverandat
lowspeeds,sinceelevatoreffectivenessisnotsufficientat
lowervelocities.Noteonfigure5thattheupsettingair-
craftpitchingmomentsarecausedbythethrustoffset
fromthefuselagecenterofgravityasthewingtilts.
Thegearedflapconcept,maypotentiallybeusedto
eliminatethetailrotorortailthruster(oratleasttosignif-
icantlyreducethepitchcontrolpowerrequiredfromthese
auxiliarytaildevices)byusingtheessentiallyfree-
pivotingwingdrivenbythegearedflaptoprovideboth
longitudinalandpitchcontrol.

Simulation Experiment

Simulation Facility

Both simulations were conducted on the NASA Ames
VMS. The VMS operational limits are +_22 ft of vertical

motion and, depending on cab orientation, +15 ft of
longitudinal or lateral motion. Both simulations used the

longitudinal orientation to focus on the longitudinal flying

qualities of the aircraft. In the VMS the pilots can

experience accelerations of up to +92 ft/sec 2 vertically,
+13 ft/sec 2 longitudinally, and +10 ft/sec 2 laterally. A

sketch of the VMS is shown in figure 6.

Cockpit Layout

The same basic cockpit instruments were used for both

simulations, although several instruments were arranged

differently for the second simulation at the pilots' request.
Glideslope and localizer information were added for the

second simulation and were displayed around the attitude
direction indicator (ADI). A new instrument was also

added for the second simulation which combined both

wing incidence and flap angle information. In addition to

the analog instruments, the first simulation displayed
wing incidence digitally, and the second simulation

displayed both wing incidence and speed digitally. For
both simulations the cockpit controls consisted of a center

stick with a aim button, a left-hand throttle with a spring

return rotary beep switch, rudder pedals, and a flap lever
located to the left of the pilot and aft of the throttle. The

flap lever was used only with the programmed flap

configuration; the lever was graduated to produce 0-100%

gain on the programmed flap schedule. During the first

simulation, a stick shaker was installed to cue the pilot
when buffet was encountered. During the second simula-

tion, a seat shaker (no stick shaker was used) and an

angle-of-attack warning light were installed to cue the
pilot when buffet was encountered.

Experiment Configurations

During the first simulation, two flap control configura-

tions, programmed flap (PF) and geared flap on the beep

(GFB), were evaluated by the pilots. In the GFB configu-

ration, the pilot controlled the geared flap using the beep

switch on the throttle grip only. During the second simu-

lation, a third flap configuration was added, geared flap
on the stick (GFS). The GFS configuration allowed the

pilot to control the geared flap using a combination of

both the longitudinal stick and the beep switch.

All three flap configurations used the spring return rotary
beep switch embedded on the throttle grip. Release of the
beep switch resulted in a constant value of the last result-

ing wing incidence. In the PF configuration the pilot beep
switch input generated a wing rate command. In the GFB

configuration the pilot beep switch input generated a ref-
erence (desired) wing incidence which through the control

laws resulted in a flap setting that drove the wing inci-
dence towards the desired wing incidence. In the GFS

configuration the pilot beep switch input and the longitu-
dinal stick input were combined to generate a reference

wing incidence which through the flap control resulted in

the desired wing incidence. For the latter configuration

the pilot had full authority of wing tilt on the beep switch

and a limited authority on the longitudinal stick. The stick

authority translated to about 2° of wing per inch of
longitudinal stick for wing incidences of 25°-! 05 ° and

was gain scheduled to 0° for wing incidences less than

25 °. It should be noted that with no longitudinal stick

activity, the Gb"B and the GFS configurations yield the
same aircraft characteristics.

Evaluation Tasks

First Simulation

The evaluation tasks during the first simulation were

hover station keeping, outbound transition, descending
decelerating inbound transition to hover, and a short

takeoff and landing (STOL) landing task.

Hover station keeping- The aircraft was positioned over

a checkerboard pattern to the fight of the runway at 50 ft
altitude in hover. The pilots attempted to maintain
position and altitude for 3 minutes.

Outbound transition- The aircraft was positioned over a

predetermined location on the runway at 50 ft altitude in

hover. The pilots smoothly increased power and ascended

to 100 ft altitude, then incrementally lowered the wing
while trying to maintain altitude. The task ended at
180-200 knots and 500 ft altitude.



Descending decelerating inbound transition to hover-

The aircraft was positioned initially downwind of the

runway at 500 ft altitude and 12,000 fi to the left of the

runway with 200 knots velocity. The pilots slowed the
aircraft velocity to about 180 knots and lowered the land-

ing gear on the downwind leg. On the base leg, the pilots
descended to 300 ft altitude, slowed the velocity to about

100 knots and raised the wing incidence to 10 °. On the

final approach, the pilots incrementally raised the wing,

adjusting power accordingly, and slowed the velocity to
about 35 knots. A desired glideslope was not specified,

the pilots were allowed to use whatever glideslope they

preferred. As the pilots approached the hover position
above the touchdown point, they descended to 50 ft
altitude and continued to raise the wing as appropriate.

The task ended when the pilots brought the aircraft to a

hover and landed.

STOL Landing- The aircraft was positioned initially at
500 ft altitude and 5,000 ft to the left of the runway with

60 knots velocity and with the landing gear down. The
task ended when the aircraft landed at the target position.

Second Simulation

The evaluation tasks were redefined for the second simu-

lation to emphasize the flying qualities differences
between the control concepts during conversion and

hover within the boundaries permitted by the math model

(i.e., primarily longitudinal flying qualities). The baseline
altitude was chosen at 70 ft to avoid configuration-

specific ground effects. The tasks were bounded by

specific performance standards, thereby permitting a bet-

ter application of the Cooper-Harper pilot rating method
(ref. 6). The four tasks and their performance standards

are described below.

Hover station keeping with turbulence- The aircraft

was positioned over a predetermined location on the

runway at 70 ft altitude in hover. The turbulence level
was severe at 8 ft/sec rms in all three axes. The pilot

attempted to maintain position for 70 sec, using whatever

technique the pilot preferred (wing incidence, pitch atti-

tude adjustment, or a combination of the two). Desired

performance was defined as +10 ft altitude, +_25 ft longi-

tudinal position, +_25 ft lateral position and +10 ° heading.

Adequate performance was defined as +90 ft altitude,
+_50 ft longitudinal position, _+_50ft lateral position and

+15 ° heading.

Level inbound transition to hover- The aircraft was

positioned initially short of the runway threshold at 70 ft
altitude with 93 knots velocity (this initial velocity corre-

sponded to 9 ° wing angle in the PF configuration and to

16° wing angle in the geared flap (GF) configurations--
for the same velocity, the wing angles are different

because of different flap settings). The pilots decelerated

the aircraft to arrive at a hover over the designated end

position while trying to maintain 70 ft altitude, level pitch
attitude, and avoiding buffet. Desired performance was

defined as +10 ft for altitude, +90 for pitch attitude, and

less than 3 sec total buffet time. Adequate performance

was defined as +90 ft for altitude, +4 ° for pitch attitude,

and a total buffet time greater than 3 seconds.

Descending decelerating inbound transition to hover-

The aircraft was positioned initially 6,000 ft short of the

runway at 800 ft altitude. The initial wing incidence

(46 ° for PF and 52 ° for GFB and GFS) was selected to

yield a speed of 40 knots, hence investigating only the

final stages of deceleration where buffet considerations
were minimized (see fig. 2) and where differences among

the control configurations were maximized. The pilots

captured the -7.5 ° glidesiope using both electronic guid-
ance (glideslope and localizer guidance on the ADI) and

the visual approach slope indicator (VASI) lights on the

runway and established a nominal sink rate of 550 ft/min.
At 400 ft altitude, the wing incidence was increased, and

power was added as necessary to maintain flightpath. The

pilots decelerated the aircraft to a hover at 70 ft altitude
while maintaining level pitch attitude and avoiding an

overshoot of the designated end position. The pilots were
to avoid buffet as much as possible by using low decelera-

tion rates and by avoiding low power settings. Desired

performance was defined as +I/2 dot (a dot is a glideslope

guidance marker on the ADI) at altitudes greater than
200 ft and +1 dot at altitudes less than 200 ft, +2 ° pitch

attitude, no overshoot of the final hover position, and less
than 5 sec total buffet time. Adequate performance was

defined as +1 dot at all attitudes, +4 ° pitch attitude, one

overshoot of the final hover position, and more than 5 sec

total buffet time.

Longitudinal reposition- The aircraft was positioned

initially short of the runway threshold at 70 ft altitude in

hover. The pilots began a forward translation, achieving a

wing angle that was 40 deg less than the initial wing

angle at hover, then started decelerating back to a hover,
and ended the task in hover at 70 ft altitude over the des-

ignated end position. The pilots were to maintain 70 ft
altitude and level attitude, avoid buffet, and arrive at the

end position without overshoot. Desired performance was
defined as +10 ft altitude, +9o pitch attitude, less than
3 sec total buffet time, and no overshoot of the final hover

position. Adequate performance was defined as +_20 ft
altitude, +4 ° pitch attitude, more than 3 sec total buffet

time, and one overshoot of the final hover position.
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Task Environment and Visual Cues

First Simulation

All the tasks were evaluated in daytime calm conditions

and were performed visually without the aid of a flight
director. No visual enhancements were added to the com-

puter generated database.

Second Simulation

The tasks were evaluated in daytime calm conditions with

the exception of the hover station-keeping task which

included turbulence. The tasks were performed visually,
except for the descending decelerating transition to hover,

which could be performed both visually and with the aid

of the glideslope and localizer information displayed on
the ADI.

In addition to an improved visual system, several visual

cues were added to aid the pilots. VASI lights were added

to help the pilots maintain glideslope. Runway cracks and

tire marks were added to aid in depth perception and to

add realism. Several vertical pylons consisting of stacked

color-coded 10 ft cubes were added along the edge of the
runway to provide height information. STOL runway

markings were superimposed over the main runway and
used to define task end positions.

Evaluation Pilots

First Simulation

Nine evaluation pilots participated in the study. Six pilots

had experience with fixed wing aircraft, and three had

experience with helicopters. Three pilots also had

experience with powered-lift aircraft; one of these pilots

also had experience flying the XC-142 tilt-wing.

Second Simulation

Six evaluation pilots participated in the study. They all

had extensive experience with fixed wing aircraft and

helicopters; five also had powered-lift aircraft experience.

Four pilots had experience flying the XV-15 tiltrotor; one
of these pilots also had experience flying the V-22 tilt-

rotor. One pilot also had experience flying the
CL-84 tilt-wing.

Results

The flying qualities results of both simulations are

summarized in figure 7 on a Cooper-Harper scale. The

symbols and brackets in figure 7 indicate the mean pilot

ratings and the maximum and minimum pilot ratings,

respectively. The three dashed brackets in the figure

indicate one pilot rating in each case that was markedly
different from the other ratings (and will be discussed

later). Individual task results are discussed further in
this section.

During the first simulation, the pilot ratings exhibited

large variations, as seen in figure 7. This was probably

due to loose constraints on task performance definitions

and to different levels of pilot training.

During the second simulation, the evaluation tasks were

defined more completely and desired performance stan-
dards were identified for each evaluation task. Aircraft

and simulator familiarization tasks were defined and

practice runs were monitored to assure that each pilot

attained a similar training level. This, coupled with better
instructions on general tilt-wing characteristics, led to

better trained pilots; consequently, the pilot ratings
exhibited less variation.

During the first simulation, pitch axis stabilization was

augmented in rate only and rate plus attitude during the

second simulation. Attitude augmentation was an im-

provement which greatly alleviated the pilot pitch-axis-

control workload. This effect can be seen in the pitch

activity in figure 8. With the addition of pitch attitude

stabilization in the second simulation, the pilots rarely

reported any pitch axis control problems.

During hover, the initial response of the geared flap

configurations to a forward wing command was a longi-
tudinal aircraft acceleration transient in the rearward

direction. The rearward acceleration transient is caused by

a transient increase in force (lift) on the wing caused by
the initial flap deflection in the propeller slipstream.

Damping about the wing pivot was increased in the sec-

ond simulation to reduce this adverse response. Although

still noticeable to the pilots, time histories showed that the

magnitudes of the rearward acceleration transients were
reduced to about a third.

Pilot compensation and workload comments in this paper
are based on the pilot subjective comments. Pilot perfor-

mance (desired or adequate-as defined in the task defini-

tions) during the second simulation was measured during

evaluation runs. Comments on the task performance are
based on actual data and not on pilot comments.
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First Simulation Results

Hover Station Keeping

Although some pilots could not detect a difference in

height control between the PF and the GFB configura-
tions, others felt that height control was less precise with

the GFB configuration. With both configurations the

pilots had difficulty visually holding position over the
checkerboard pad and tended to drift about 50 ft and

sometimes as much as 100 ft.

Outbound Transition

The first difference noted by the pilots between the PF

and the GFB configurations during this task was the

initial longitudinal aircraft response to a forward wing

command from the hover position. The initial response

with the GFB configuration was a rearward acceleration
transient which resulted in a delayed longitudinal

response compared to the PF configuration.

During mid-conversion, the aircraft experienced large

pitch down moments with both the PF and the GFB

configurations; however, the majority of the pilots felt

that the pitch down attitudes encountered with the GFB

configuration were not as severe as those encountered
with the PF configuration. At lower wing incidences,

wing movements resulted in an aircraft heave response
which was similar for both flap configurations. One pilot,

who was a former XC-142 project pilot, noted that both

the pitch down moments and the aircraft heave response
were similar to the XC-142 aircraft behavior.

The pilot workload was associated with altitude control

and with trying to minimize the pitch down attitudes
encountered during mid-conversion. Pitch oscillations
were sometimes encountered while trying to correct this

problem. Throttle sensitivity and heave damping were
low, and sometimes caused overcontrol while monitoring

altitude.

Descending Decelerating Inbound Transition To

Hover

The aircraft heave response to wing movements was

noticed again with both configurations. At the higher

wing incidences, wing movements produced less heave
and more drag. Some pilots felt that the altitude changes

due to the heave response were more exaggerated with the

GFB configuration than with the PF configuration. Buffet
was encountered with both configurations during mid-

wing angles.

The pilot workload was associated with controlling pitch
attitude, altitude and glideslope. Pilot compensation was

required with power to offset the heave response to wing

movements.

Stol Landings

The pilot workload was higher with the GFB configura-
tion than with the PF configurations and was associated

with trying to avoid buffet which was encountered more

often with the GFB configuration. There was some initial

maneuvering in altitude and velocity, but the overall

approach was fairly smooth. Pilots controlled glideslope

and velocity by a combination of throttle adjustments and

pitch commands.

Second Simulation Results

Hover Station Keeping With Turbulence

As mentioned in the task definition, the pilots were

allowed to use whatever technique they preferred (wing

incidence, pitch attitude, or a combination of the two) to

regulate longitudinal position in hover. With the PF
configuration the majority of the pilots preferred con-

trolling their longitudinal position with wing incidence.

This preference has been noted before by CL-84 pilots,
"For forward and aft translation the pilots preferred to use

wing tilt while holding the fuselage level. This was
smoother, easier and more natural than tilting the whole

aircraft" (ref. 7).

With both GF configurations most pilots preferred using

pitch attitude over wing incidence to control longitudinal

positioning. One pilot evaluated this task using both tech-

niques and gave the pitch attitude technique a 5 and the

wing incidence technique a 7 where the degradation was

primarily attributed to a delay in longitudinal response

leading to oscillatory longitudinal characteristics. This

delay stems from a characteristic of the GF configurations
mentioned earlier, where the initial response to a forward

wing command results in a rearward acceleration tran-
sient. This response characteristic was also responsible

for degraded speed predictability near hover with the GF

configurations compared to the PF configuration.

One pilot evaluated this task with the GFB configuration
on three separate runs: one with turbulence in all three

axes, one with no lateral turbulence, and one with no

turbulence. The pilot flying qualities ratings were 3, 2.5

and 1.5, respectively.

One hypothesis concerning the GFS configuration was

that it would reduce pitch control requirements, and

hence, pitch activity might be lower than with the
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GFBconfiguration.However,examinationofdatadidnot
showreducedpitchactivitycomparedtotheGFB
configuration.Thisisprobablyduetothecurrentlevelof
controllawdevelopmentwhichallowedinsufficientwing
authorityonthelongitudinalstick(about+10% only).

The workload and pilot compensation associated with

height and position control with both GF configurations

were similar to the PF configuration, except that the lag
between wing movement and perceptible longitudinal

aircraft response required moderate to considerable lead
compensation.

In general, the pilots achieved desired performance

standards for altitude, lateral position, and heading, and

adequate performance for longitudinal position. Average
longitudinal drifts were -14 ft to 51 ft with the PF,-13 ft
to 38 ft with the GFB, and -5 ft to 38 ft with the GFS. In

most cases the pilots were unable to perceive the longitu-
dinal drift because of limited visual cues.

Level Inbound Transition To Hover

At low wing incidence, the short term response to wing

movements was an aircraft heave response. Some pilots
felt the heave response to initial wing change was reduced

with the GFB configuration compared to the PF configu-

ration; one pilot noted that the "have response to initial

beep (wing tilt) was much better than (the) programmed

flap, coupling (was) not as bad." Another pilot felt the

throttle usage to control the heave response was lower

with the GFB configurations and thus an "improvement

over the programmed flap." The heave response with the

GFS configuration was similar to the GFB configuration.

All pilots agreed that the time spent in buffet increased

with the GFB and the GFS configurations compared to
the PF configuration (an average total buffet time of
8.0 sec for the GFB and 8.4 sec for the GFS vs. 2.1 sec

for the PF).

Power management was required by the pilots to offset

the heave response to a wing change and to avoid buffet

(especially with both GF configurations). Pilot compensa-
tion was also required to predict speed towards the hover
end position.

In general, the pilots achieved desired performance for

altitude and pitch attitude with all three flap configu-
rations, desired performance for buffet with the PF

configuration, but only adequate performance for buffet

with both GF configurations.

Comments on buffet- The increased time spent in buffet

with the GF configurations is most likely due to lower

flap settings than the PF configuration for similar wing
angles. Examination of time histories showed that buffet

was encountered during the mid-wing-incidence range of

350-60 ° for both the PF and the GFB configurations.

During this mid-wing-ihcidence range, the flap range was
200---40 ° for the PF and 5°-20 ° for the GFB.

Increase in leading and trailing edge flap deflections on
the CL-84-1 improved the buffet boundary of the aircraft

(ref. 8). Also, one of the methods proposed to alleviate

buffet from results of flight investigations of the VZ-2

was larger flap deflections (ref. 9).

Descending Decelerating Inbound Transition To
Hover

The differences among the three flap configurations were

minimal during this task. Most pilots felt the workload

was low because the task was slow and glideslope control
required only power regulations. However, with the PF

configuration, two pilots noticed a coupling between wing
movement and vertical response and felt that the work-

load was high due to poor heave predictability. Exam-

ination of the strip charts showed that the reported heave

control difficulties were associated with large abrupt wing
movements.

With the GF configuration one pilot noted that he "felt

glideslope tracking was the tightest so far" compared to

the other two flap configurations; another pilot said
"height control was easier than with the PF configura-

tion." Since the task definition required a level pitch

attitude, longitudinal stick activity was minimal, and the

GFS configuration showed only subtle differences from

the GFB configuration.

Largely because of the task structuring, no buffet was

encountered with any of the flap configurations. In

general, the pilots achieved all the desired performance

standards with all three flap configurations.

Longitudinal Reposition

As noted previously, the short term response to a wing
incidence change at the lower wing angles was a heave

response with all flap configurations. Again, the pilots

noticed that the initial longitudinal response to a forward

wing command from the hover position was sluggish with

both GF configurations compared to the PF configuration;

hence, the resulting degraded speed predictability near

hover of both GF configurations was noted by the pilots.

Using the wing incidence technique for final hover

acquisition with the GFB configuration, one pilot got into

a divergent position pilot induced oscillation (PIO) "that

could not be suppressed with any amount of compensa-
tion" (the rating was a 7). Time histories showed that the



flapwasatthelowerlimitduringmostofthehover
acquisition,whichcausedadistortedwingflapresponse.

Initially,thetailthrusterpitchcontrolpoweroftheGFS
configurationwas_+0.3 rad/sec 2, which was half the pitch

control power of the other two flap configurations. Sev-

eral pilots evaluated this configuration without encoun-

tering any tail thruster pitch control power limits.
However, one pilot, using an aggressive wing tilting

technique, did encounter loss of aircraft control because

of tail thruster control power saturation, "...an overshoot

was developing which required continuous wing beep

(wing movement). As power was increased to account fol:

the loss of wing lift, the power-pitch coupling response

became apparent and objectionable. It was countered with

stick input but when the flaps reached the deflection limit

a divergent pitch PIO rapidly developed that resulted in
loss of control after two oscillations." This resulted in the

flying qualities rating of 10. The tail thruster pitch control

power of the GFS configuration was increased to

_+0.6 rad/sec 2 (the same as the other two configurations),

and the problem did not occur again. The same pilot using

the same aggressive wing tilting technique evaluated the

task again and the rating was a 5.

Pilot compensation was required to lead the heave

response with throttle and to predict speed towards the
end of the task. The workload was primarily in the verti-

cal axis trying to maintain altitude. One pilot noted that,
"...conditions were ideal and that any complications due

to wind, turbulence or visibility would significantly add
to the workload."

In general, with the PF configuration the pilots achieved

all the desired performance standards. With both GF

configurations, the pilots achieved desired performance
standards for altitude and buffet, and desired to adequate

performance for pitch attitude.

Tail Thruster Pitch Control Power Usage

The maximum tail thruster pitch control power was
0.6 tad/see 2 for both the PF and the GFB configurations.

As previously discussed, the maximum pitch control
power of the GFS configuration was initially 0.3 rad/sec 2,
and was later increased to 0.6 tad/see 2. The V/STOL

Handling Qualities Criteria (ref. 10) recommends that

available pitch control power be in the range of
0.4-0.8 rad/sec 2 in hover and 0.4-0.6 rad/sec 2

STOL mode.

The following discussion on pitch control power usage

refers to results obtained during the second simulation

only. The pitch control power commanded is a result of
the pilot's longitudinal stick input and the SAS (stability

augmentation system) input. The longitudinal stick input
to tail thruster command logic was the same for each of

the three configurations. The SAS input was added to the

longitudinal stick input, and the combined pitch control

power was limited to 0.6 rad/sec 2. The tail thruster was

not phased out at the higher velocities.

The maximum pitch control power used during all runs
evaluated for each task is summarized in table 1. For the

hover case, the maximum pitch control power used with

the PF and the GFB configurations is broken down

according to pilot longitudinal positioning technique

(i.e., wing or stick).

Table 1. Maximum pitch control power encountered

(rad/sec 2)

Longitudinal Level Descending

reposition inbound decelerating

PF 0.24 0.18 0.13

GFB 0.34 0.36 0.18

GFS 0.34 0.31 0.22

Hover in turbulence

PF (wing) a 0.18

PF (stick) 0.26

GFB (wing) b 0.22

GFB (stick) a 0.14

GFS (wing 0.45

and stick)

apreferred technique for controlling longitudinal

position.

bOne evaluated run only.

It is important to note that in most cases the maximum

pitch control power encountered was an isolated "spike"
in the data, often resulting from aggressive wing tilting.

This occurred especially in the case of the geared flap

configurations where aggressive wing tilting drove the

flap into a position limit (0 ° if tilting up or 60 ° if tilting
down) which then resulted in a large spike increase in

pitch control power. Aggressive wing tilting also
increased the pitch control power usage of the pro-

grammed flap, but because the programmed flap was

scheduled, flap position limits were never encountered

and the increases in pitch control power were not as large

as with the geared flap.



Comparisonofthevaluesshownintable1doesnotshow
areductioninpitchcontrolpowerusedbythegearedflap
configurationscomparedtotheprogrammedflapconfigu-
ration.However,thevaluesintable1arepitchcontrol
powerresultsoftheflapconceptsatthecurrentstagein
development.Furthercontrollawdevelopmentandmore
studyonthetreatmentofflapstopsandwingpivotloca-
tionareneededtoaddressthepitchcontrolpowerissue.

Summary of Results

1. The pilot ratings and comments showed that in

general, the programmed flap and the two geared flap

configurations had similar flying qualities (in the
level 1-2 range). Hence, the geared flap concept is

feasible for tilt-wing aircraft.

2. Two main differences between the programmed flap

and the geared flap configurations were the amount of

time spent in buffet and the longitudinal aircraft response
in hover. The amount of time spent in buffet was greater

with both geared flap configurations than with the pro-

grammed flap configuration because of lower flap deflec-
tions for similar wing incidences. With both geared flap

configurations, the initial longitudinal aircraft response to

a forward wing command from hover was a rearward
acceleration transient. This acceleration transient resulted

in sluggish longitudinal aircraft response and hence in

degraded speed predictability near hover with both geared

flap configurations compared to the programmed flap

configuration. The transient response was reduced in the
second simulation with the addition of damping about the

wing pivot.

3. The pitch attitude stability augmentation system

(SAS) added to the flap configurations during the second
simulation was a significant improvement over the pitch

rate SAS of the first simulation, and greatly alleviated the

pilot workload associated with pitch axis control.

4. At the current level of development the results did

not show a reduction in tail thruster pitch control power

usage for the geared flap configurations compared to the

programmed flap configuration.
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Figure 5. Tilt-wing pitching moments due to wing rotation.

Figure 2. Simulation buffet boundary for-75% glideslope.
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Figure 6. Vertical motion simulator.
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